PRESENTER: Eric L Goldwaser, D.O., Ph.D.^{1,2}

Introduction

Schizophrenia spectrum disorder (SSD) is one of the most severe forms of mental illness, yet mechanisms remain unclear. A widely established brain finding in SSD is hippocampal atrophy, and a coherent explanation similarly is lacking. Epidemiological evidence suggests increased cerebrovascular and cardiovascular complications in SSD independent of lifestyle and medication, pointing to disease-specific pathology. Endothelial cell contributions to blood-brain barrier (BBB) compromise may influence neurovascular unit and peripheral vascular function, and we hypothesize that downstream functional and structural abnormalities may be explained by endothelial deficits.

Methods

Postmortem human hippocampus sections (n=27 controls, n=25 SSD) were obtained from the NIH NeuroBioBank and Maryland Brain Collection. Leakage phenomena was observed using a secondary IgG-only (Vector Laboratories, 1:250) staining technique, to demonstrate endogenous IgG extravasation. IgG leak was quantified using unbiased stereology (MBF Bioscience, VT) to measure the areas of IgG immunoreactivity under blinded analysis. A ratio was then calculated of fraction of leak in the tissue compared to overall tissue area.

Post-occlusive reactive hyperemia was used with simultaneously administered brachial artery reactivity testing (Philips iE33 Ultrasound, Germany) and laser speckle contrast imaging (Perimed Inc., Sweden) of the macrovascular- and microvascular endothelial cell response, respectively, in n=26 community controls and n=34 SSD participants. Flow-mediated dilation was captured in the brachial artery by calculating the percent dilation at one-minute post-occlusion compared to baseline, while perfusion measures captured using the Laser Contrast Imager with area under the curve (AUC) and time relative to baseline perfusion measures. The primary measure of BBB leak between diagnostic groups was compared using raw means as well as covarying for age, sex, and PMI with reported estimated marginal means. Multiple comparisons were corrected using false discovery rate with q-value set at < 0.05.

Fig 1. Semi-quantitative approach to quantify BBB breach extent

-mediated dilation = [(4.1cm - 3.8cm) / 3.8cm] x 10

Clinical Demographics and <u>Tissue</u> Characteristics

		Control (n=27)	Schizophrenia (n=25)	Test statistic	p-value	
Demographics	Age [years] (SD)	51.8 (13.4)	56.9 (14.6)	t=-1.3	0.2	
	Sex (% male)	58%	56%	χ ² =0.2	0.9	
	Race % (C/AA)	20 / 7	17 / 8	χ²=0.2	0.6	
Section Characteristics	PMI [hours] (SEM)	14.5 (1.0)	11.9 (1.3)	t ₅₀ =1.6	0.12	
	Average section surface area (µm ²) (SEM)	$1.8 \cdot 10^8 (1 \cdot 10^7)$	$1.6 \cdot 10^8 (1 \cdot 10^7)$	t ₅₀ =1.4	0.17	
	sIgG Leaked Area Fraction (µm ²) (SEM)	$8.9 \cdot 10^{6} (2 \cdot 10^{6})$	$1.5 \cdot 10^7 (3 \cdot 10^6)$	t ₅₀ =-1.9	0.06	
	Fraction of sIgG Leaked Area	0.05 (.01)	0.11 (.02)	t_{50} =-2.3	0.02	
	Fraction (SEM)	0.047 (.02) ^a	0.12 (0.2) ^a	$F_{1,48} = 7.3^{a}$	0.009 ^a	
	SD – Standard deviation; C – Caucasian; AA – African American; PMI-Postmortem					
	Interval: SEM-Standard Error of Mean					

<u>Participant</u> Clinical and Demographic Information

	Control (n=39)	Schizophrenia (n=37)	Test statistic	p-value		
Age [years] (SD)	41.7 (15.3)	39.0 (12.1)	t=-0.82	0.4		
Sex (% male)	47.8	81.3	χ ² =7.5	0.006		
BMI (SD)	27.6 (7.0)	30.0 (5.1)	t=-1.5	0.2		
Current smoking status (%)	27.2	25.8	χ ² =0.14	0.9		
Skin tone [#] (SEM)						
L^*	51.4 (2.23)	50.5 (1.90)	t=0.30	0.8		
a*	9.7 (0.60)	9.8 (0.5)	t=-0.14	0.9		
b*	12.4 (0.87)	12.3 (0.86)	t=0.03	1.0		
Heart rate, bpm (SEM)	69.5 (2.2)	75.7 (1.9)	t=-2.1	0.04		
Respiratory rate, rpm (SEM)	15.3 (0.5)	18.1 (0.7)	t=-2.9	0.005		
Systolic BP (mmHg) (SEM)	113.5 (2.1)	121.0 (2.5)	t=-2.2	0.04		
Diastolic BP (mmHg) (SEM)	72.5 (1.6)	76.2 (1.8)	t=-1.5	0.14		
Mean Arterial Pressure (SEM)	86.2 (1.6)	91.2 (1.9)	t=-1.9	0.06		
Pulse Pressure (SEM)	41.0 (1.4)	44.8 (1.8)	t=-1.6	0.12		
SpO2 (SEM)	98.6 (0.3)	97.2 (0.3)	t=3.3	0.002		
Forearm Temperature (SEM)	89.6 (0.5)	89.4 (0.6)	t=0.30	0.8		
Oral Temperature (SEM)	97.6 (0.1)	97.8 (0.6)	t=-1.34	0.19		
# L* values determine the lightness/darkness of a color used to relate skin color. a* values measure						

utaneous erythema, proportional to the melanin composition and cutaneous blood flow. b* values display constitutional pigmentation.

Postmortem hippocampal blood-brain barrier leakage is increased in schizophrenia compared to controls as well as peripheral endothelial vascular dysfunctions and perfusion.

Results

Fig 2. Temporal cortex near hippocampus of SZ patients demonstrates increased BBB permeability and selective interaction between slgGs and pyramidal neurons.

Fig 4. Comparison of the extent of BBB breakdown in the hippocampus and surrounding temporal cortex of the SZ and Ctrl subjects with respect to diagnosis, age, and sex.

Postmortem samples demonstrated 11% BBB leakage in SSD compared to 5% in controls $(t_{50}=-2.3, p=0.02)$. Linear regression was performed to determine age, sex, and PMI in addition to diagnosis as predictors of BBB leak, and the model remained significant $(F_{4,47}=3.0, p=0.03)$ with a significant diagnosis (t=3.3, p=0.002) but no significant age (p=0.5), sex (p=0.2), or PMI (p=0.5) effects. We further explored the impact of age on BBB permeability by splitting our sample population in two age-groups, 30-50 or 50-70 years-old, based on mean and medians. BBB leak fraction was also significantly increased in older aged schizophrenics vs controls ($t_{30}=2.5$, p=0.02). We found no significant sex difference in BBB permeability in the combined sample (p=0.99), however, there was a significant increase in BBB permeability only in male schizophrenia subjects compared to male control subjects (t_{51} =2.7, p=0.009) on post-hoc analysis, while females did not (p=0.9), with a diagnosis x sex interaction (p=0.03).

Fig 3. Hippocampus proper of SZ patients demonstrates increased BBB permeability and selective interaction between slgGs and neurons.

Fig 5. Vascular endothelial function tests from post-occlusive reactive hyperemia

(() ()	la m	n r
en	do	t t
e	vic]
W K	yat och	t 11
1U1	nive	۲.
2	² Ma	Ŋ
3 Ro	owa	n
	lioro	
		A
		A
]
		1
	Base Oc	elir ech
	I-min oc 3-min oc 5-min	nu clu nu clu nu
Post	oc -OCCl	ch US
vasc in th amo	ular (ne co ngst	cc n tł
dilat med indic	ion o iated cating	of d g
1 -		

The contributions that vascular abnormalities may have, even after accounting for psychopharmacologic and lifestyle regimens, may shed light onto mechanistic underpinnings that can be harnessed in both approaches for schizophrenia. detection and treatment Psychoneuropathology within SSD may be mediated by endothelial function within the various vascular compartments, including that of the brain. These results provide evidence for robust explorations of how endothelial dysfunction underserves impairments in neural correlates of SSD, with supporting preliminary data.

ELG is supported by the University of Maryland / Sheppard Pratt Physician-Scientist Training Program with protected time and funding to engage in research.

Hippocampal blood-brain barrier mage and peripheral vascular promise in schizophrenia share the lial dysfunction: preliminary lence from postmortem and in vivo testing

tt Marshall², Nimish Acharya³, Peter unov², Elliot Hong²

rsity of Maryland Medical Center Sheppard Pratt Health System, Baltimore, MD, 21201 ryland Psychiatric Research Center, Center for Brain Imaging Research, Catonsville, MD, 21228

University School of Osteopathic Medicine, Graduate School of Biomedical Sciences, Stratford, NJ

vascular perfusion flux indices and derived kinetic meas						
	Ctrl (n=39)	SSD (n=37)	Test statistic	p- value		
Maximal flow (APU) (SE)	98.1 (4.7)	103.5 (6.6)	t=63	.53		
Time to maximal flow (TMF), sec (SE)	24.8 (2.9)	15.6 (1.5)	t=3.0	.005		
AUC of time to maximal flow (SE)	71.4 (3.9)	65.0 (4.4)	t=1.1	.29		
Amplitude difference from resting to maximal flow (AMP _{RF})	54.4 (3.9)	61.4 (4.3)	t=-1.17	.25		
Amplitude difference from biological zero to maximal flow (AMP _{BZ})	77.4 (4.5)	82.4 (5.7)	t=67	.51		
Percentage increase from resting to maximal flow (PI _{RF})	126.5 (9.9)	164.5 (15.4)	t=-2.0	.055		
Percentage increase from biological zero to maximal flow (PI _{BZ})	417.7 (41.7)	545.1 (90.2)	t=-1.2	.24		
AUC _{RF} (AU·s)	1.7 (.09)	1.7 (.08)	t=.08	.94		
AUC _{BZ} (AU·s)	3.9 (.3)	4.1 (.5)	t=20	.84		
ORC _{MF} (AU·s ⁻¹)	4.2 (.7)	6.9 (1.2)	t=-1.9	.068		
APU = Arbitrary Perfusion Units; AMP = Amplitude of the response expressed as a difference						
between maximal flow (i.e. peak perfusion) and resting flow (i.e. baseline) or biological zero ("BZ") (i.e. occlusion); PI = Percentage increase represented as the ratio between maximal flow						
and resting flow or biological zero: AUC = area under the 1-minute hyperemic curve with respect						

resting flow or zero perfusion; ORC = Overshoot rate of change as a function of maximal flow All values were adjusted for mean arterial pressure (MAP).

	Brachial artery reactivity testing (cm)				Microvascular perfusion measurement (APU)				
	Ctrl	SSD	Test statistic	p- value	Ctrl	SSD	Test statistic	p- value	
ne (SE)	3.5 (.19)	3.8 (.13)	t=-1.48	.15	43.7 (1.7)	42.2 (3.7)	t=.36	.7	
lusion	N/A			20.7 (1.6)	21.1 (2.2)	t=14	.9		
ite post- usion	3.9 (.2)	4.1 (.14)	t=97	.34	73.5 (4.1)	69.4 (5.6)	t=58	.6	
ite post- usion	3.7 (.2)	4.0 (.15)	t=-1.18	.25	51.0 (2.8)	49.0 (5.0)	t=34	.7	
ite post- usion	3.6 (.19)	3.9 (.14)	t=-1.36	.18	48.7 (3.3)	45.6 (4.4)	t=.55	.6	

isive reactive hyperemia experiments were performed in the peripheral ompartments to translate the findings of central endothelial cell dysfunction ntext of BBB permeability. Group differences were significantly present he peripheral endothelial vascular measures shown using flow-mediated the brachial artery, a gold-standard cardiovascular measurement. Flowdilation was significantly reduced in the SSD group compared to controls, endothelial damage (12% vs 8%, p=0.02), after covarying age, sex, and body-mass index. Microvascular endothelial perfusion of the time to reach maximal flow was significantly shorter in SSD compared to controls (16 seconds vs 24 seconds, p=0.006) as well.

Conclusions

Support & Acknowledgements